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Abstract

The quasi-elastic scattering of two nuclei is considered in the high-

energy optical model. Energy loss and momentum transfer spectra
for projectile ions are evaluated in terms of an inelastic multiple-

scattering series corresponding to multiple knockout of target nucle-

ons. The leading-order correction to the coherent projectile approx-

imation is evaluated. Calculations with uncorrelated wave functions
are compared with experimental results.

Introduction

The assessment of radiation risk to astronauts from cosmic radiation is currently an area

of active investigation. Predictions of biological damage will ultimately require a knowledge
of the particle fluence spectra at the endpoint of interest. In turn, these particle fluence

spectra are determined from charged-particle transport codes that must contain a description
of all important physical processes that occur as the incident ions and subsequent generation

fragment nuclei pass through natural and protective radiation shielding. A theoretical model

for the prediction of fragmentation cross sections is extremely usefuI, as it cannot be expected
that enough experiments will be performed for all the collision pairs and energies of interest in

cosmic ray studies. Experimental data are most often in the form of inclusive measurements

where a single reaction product is typically detected in a many-particle final state. Although

several mechanisms may lead to the single product, models must be compared with the inclusive
measurements for validation.

The inelastic collision of two nuclei at intermediate or high energies is often described as

a two-step process. The first step includes multiple scatterings between projectile and target

nucleons leading to the knockout of nucleons and clusters, the production of particles, and the
deposition of energy. The second step involves the cascade of initially struck particles within their

host nuclei and the de-excitation of the nuclear systems, which may proceed through particle
emission. Recently, we have considered inclusive heavy-ion scattering using the high-energy

optical model (refs. 1 and 2). The multiple scatterings between projectile and target imcleons
can be divided into elastic and inelastic collision terms corresponding to a distortion effect and

the knockout of nucleons, respectively. Calculations (ref. 2) with the independent particle model

(IPM) show that even for large collision pairs, the number of inelastic collisions that occur is
quite small, usually two to four. Although correlation effects may be important corrections

to the IPM, especially for cluster knockout, the rapid convergence in the number of inelastic
collisions favors a "doorway" picture of heavy-ion fragmentation. In the doorway picture the

first step involves only a small number of knocked-out nucleons, with the subsequent motion

of these particles and nuclear de-excitation leading to the large number of final fragmentation

channels observed in experiments.

In our previous work (refs. 1 and 2) the cross-section distribution in total momentuin transfer

was considered. Herein, we extend this work in order to evaluate the energy loss cross section

of the projectile in inclusive scattering. The relationship of the projectile energy loss to the

target response function and excitation energy is considered and the effects of multiple inelastic
scatterings are treated. The correction to the coherent projectile assumption (ref. 1) is evahmted

to leading order. Previous caIculations in high-energy formuIations (refs. 3 to 5) have considered
only elementary projectiles and usually assume a zero-range two-body interaction (ref. 4) or

a factorization approximation (rcf. 3). In this work only forward-peaked wave functions are

assumed in the evaluation of higher order terms. The model presented herein is immediately

applicable to the development of nuclear transport codes for bulk shielding materials, as is



illustratedwith calculationsof energylossdistributionsfor protons,4Heand 160 in common
shieldingmaterials. The methodsdevelopedhereinare expectedto lead to an improved
descriptionof thefirst stepof heavy-ionfragmentation.

Multiple Inelastic Collision Series

In theeikonalcoupledchannels(ECC)model(refs.6 to 8) thematrixofscatteringamplitudes
for all possibleprojectile-targettransitionsis givenby

f (q) = 2zr f d2b eiqb (1)

where barred quantities represent matrices, b is the impact parameter vector, q the momentum

transfer vector, and k the projectile-target relative wave number. In equation (1), 2 is an order-

ing operator for the z-coordinate, which is necessary only when noncommuting two-body inter-

actions are considered. The eikonal phase elements are defined by matrix elements of arbitrary

projectile-target states of the following operator (for commuting two-body interactions):

1 /(b) -- 27rkNN _. d2q¢ iq'b e -iq'sa eiqsJfN N (q)

cl,,j

(2)

where c_ and j label the projectile and target constituents, respectively, s is the projection of
the internal nuclear coordinate onto the impact parameter plane, fNN is the nucleon-nucleon
scattering amplitude, and kNN is the mmleon-nucleon relative wave number.

In treating inelastic scattering we assume the off-diagonal terms in N, denoted by XO, are

small compared with the diagonal ones, XD' and then expand f in powers of XO:

f (q) -- 27r m! (3)
m=l

We also will make the assumption that the diagonal terms are all represented by the ground-

state cla.stic phase X. Using equation (3) we sum over target final states X (continuum) to find
the inclusive angular distribution for the projectile when its mass remains unchanged as

(d_)iN- (_-_)2k2 f d2bd2bteiq'(b-bt) ei[X(b)-x_(bt)]

1

×Z Z
Xy_O m=l

-- < OpOT[ [i)( (b)] m ]OpX >

x < XOp [-i;_"_(b')]m OpO T > (4)

Equation (4) allows only for a study of the momentum transfer spectra of the projectile. In

considering the projectile energy loss, energy conservation must be treated. With continuum

states used for the target final state, energy conservation leads to

AT

\dOdEp,(d2_ )IN -- (2_-)2k2 /d2bd2bteiq(b b')¢i[)_(b)-xt(b')]Z I'Vm(b,bt,w) (5)
rn=l



and
AT

dE_pt IN m=l

where Ep, is the energy of the projectile in the final state, w is the projectile energy loss, and
we define

_),_(b,b',w)-- 1 f j_l[ dkj ](ml) 2 [(27r)2j 6(E¢- Ei) < OpOTl[2(b)l" IOpkj >

<kjOp[[2t(b')]" OpOT> (7)

where kj is the wave number vector of a knocked-out target nucleon.

The inelastic collision series of equation (5) is expected to converge fairly rapidly, and in tile

next section we consider evaluating this series for an uncorrelated target wave function and using
plane-wave states for knocked-out nucleons. First, we briefly consider the lowest order term and

its relationship to the target response flmction. The first inelastic term is

I¥1 (b, b', w) = / d2qd2qte iqb e-iq"b'F (q)F (-q') fNN (q) fN_N (q')

f dk . .I,× _ _(Ef- Zi) < 0 T Ze'q'sj k >< k _c .q'sj OT > (8)
J J

If we neglect target recoil we can write

_ (Ef _ Ei) = -lhn ( 1 l )7r w-- E,k + ir1 w + E k + ir I (9)

and then

}VI (b, b', w) = f d2q d 2q' e iq'b e-iq"b'F (q) F (_qt) fNN (q) fN_N (q')

--1
× --R (q, q', w) (10)

7t-

where the target response fimction is

R(q, qt, w) =f dk ,, -iq'.s_,._(27r)2 _ < erie ':qs.jIk >< ,tie Ic'r >
J./

(1 1 )x (11)
w - E k + ir_ w + E k + it/

Only the j_ = j terms contribute for nonzero w, and we neglect the j ¢ j_ terms since bound

states dominate for small w. The plane-wave impulse approximation (PWIA) assumes that

X _ 0 and that only the m = 1 term contributes, such that

d2_r k2_2_r,2 da [_ ]dadZp, "_ k2---N_P'_T_ (q)_ R(q,q,w) (12)
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We also note that in nuclear matter, translation invariance implies (ref. 9)

R (% q', w) = R (q, q', w) 5 (q - q') (13)

which leads to some simplification in distorted wave calculations. Bertsch and Esbensen (refs. 10

to 12) have introduced a surface response model in which the PWIA is assumed; however, eikonal

waves are introduced into the response operator and provide localization to the nuclear surface.

This approach works quite well when multiple inelastic collisions do not contribute. For large

momentum transfer and larger projectiles these higher order terms may become important and
are treated next.

Collision Terms

In evaluating the collision terms VV:m, we assume an uncorrelated wave function for the

target and plane waves for continuum states. The inclusion of final-state interactions occurs in

the transition form factors of the target discussed below. The projectile motion is treated in the

coherent approximation following reference 1 and the leading-order correction is considered.

The first collision term is written as

_V1 (b, b', w) - A2pAr d2qt eiq b e-iqt.bl F
] d2q (q) F (q')(2_kNN)2

It is helpful to change variables as follows:

1

(14)

(q+q') (15)

such that

w1 (R, S, w) -

= q - q' (16)

x = s - s' (17)

1 (s + s') (18)Y=5

R = b - b' (19)

1 (b + b') (20)S=)

(27rkNN) 2

× R1 (a, _, w) (21)

where we have defined

A (q) = F (q) fNN (q)

and

f dk 6(w_Ek ) GOTk(O tR1 (Ol'/3' W) =

(22)

(23)
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FollowingKrimm et al. (ref. 3), we can formally treat the delta function in equation (23) by

introducing a Fourier transform pair:

? dt eiwt_l ((_,Cl, t)R1 (_,13, w) =
oc 27r

(24)

SR1 (c_,t3, t) = dwe-iwtR1 (c_,]3, w)
(30

(25)

Then,

dk

For a nonrelativistic nucleon we have

k2 (27)
E k -- 2raN + eB 1

where (B_ is the binding energy. Equation (26) then becomes, with the assumption of plane

waves for tile target final state in GOT k,

dk " t e k2t/2m'_" e ic_'xR1 (a, t3, t) = _ dx dy e -feB1

X X

x (I) (y + _) (I)]" (Y - _)

eifl.y eik-x

(28)

where • is the single-particle wave function of the target ground state. After two integrations

we find from equations (28) and (24) that

R1 (O_, 13, W) =

x ¢ (y + _) ct (y _ _)

0

(W > (B1)

(w< eB1)

(29)

The second collision term is found in a similar fashion to be

w2 (a, S,w)- 4 2 fA pA T ei(cq +_2).R
4 (21rkiN) 4 d2al d2c_2 d2fll d2f12

x ei(fll+fl2)'S A (al + _) A_ (al - _-_) A

xA_ (a2-_) R2(C_1,c¢2,131,132, w)
(30)
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where

R2(_t,_>_l,&,-') =

m 2

f d2zl d2x2 d2yl d2y2 ei_l 'xl eia2"X2eiB1 'yl eif32'y2

v/2.,,(w-_.,)(4+_)
w > eB2 )

(w < eB2 ) .

(31)

With similar coordinate changes as those described above, the ruth order collision term is

_,_ (R, S, _) = P _'T d2oej d2_j
(m,!) 2 (2rrkNN) 2m

× R,n(al,Ct2,...,O:rn,_l,l_2,--.,l_m,w) (32)

where

R,,, (cq, c_2..... a,,,, _l, _2 ..... _,,_, w) =

)?t _mr r¢1

x _(yj + .X_I)_t (yj _ _2&)]

2m l(u' _ _Um)m 1
x

[_m.,,(w- _,,,>E,=, x_]_-'>/_

. ,,,,,(_/,mN(-_..)Z,=,,_)
o

W'e next look for a simplification of the terms for m > 1.

The ruth order Bessel function is given by (ref. 13)

(w >_ eBm)

(W<¢Bra)

(33)

1 (2)m [1 1 (2)2 1 1(2)4 ]m+l + (m +1) (m + 2) 2! -'"+""
(34)

We introduce the approximation

Jm-1 (_mi_jrn=lX2)

(em,/Z>,x_)_ _
1 m ( _mXj "_ 4 4

(m- 1)! 2 m-1 H .1o j +O@mxj)
j=l \2(m-1)/2

(35)

where

_m = V/2mN (w - eBm )

such that

/_m (Ctl, Oe2,"', °em,_l,/32,...,/3m, W)
w -- eBm) m-1 m1-1

(m - 1)! 11
j=l

_mR1(°J,J

(36)

(37)



and

w,,,(R,s,w)= (_m--_._ W1 R,S, 2(_-l)/2jj
(38)

Equation (35) is expected to be a useful approximation since the wave functions are peaked at

xj = 0. Also, since CBt < eB 2 < ... < eBm and successive terms in the collision series dominate
as w increases, _m should not be too large in the region of interest. We then have for the energy

loss spectra (eq. (5))

df_ dE U ] IN

k2 ,:{xJR+(s/2)]-x t JR-(S/2)1}
(27r)2 / d2Rd2Se iq'R e

× E (W :CB_,. n).) - IvV1 R, S,
m=l (m -- 1)! (m!) 2 2 ('_--_)/2

(39)

and

do-

dEp, -- f d2S e-2IIn[X(S)]

A T m- 1
(W -- _Bm)

m=l
em TM2(_-1)/2]j

(40)

The coherent approximation assumes the projectile remains in the ground state throughout

the scattering. The leading-order correction to the coherent terms occurs in I'V2 and corresponds

to the following replacement (from eq. (55) of ref. 1):

--+A2p{[F(20_I)+(Ap-1) F(_I-+--_-) F(C_l---_)]

X [F(2o/2)+(Ap_l)F(oz2+-_)F(c_2--_)]} (41)

which physically allows the projectile to dissociate in the intermediate state. Further modifica-

tions, which are not included herein, are necessary when correlation effects are treated. Next we

consider model inputs and application of the above formalisIn.

Calculations

We next discuss physical inputs necessary for evaluation of the cross sections of equations (39)

and (40). We employ a two-body amplitude of the form

o- (p + i) kNN e_Bq2/2 (42)
fNN (q) = 47r

where the spin-isospin averaged energy-dependent parameters are the two-body cross section o-,

the ratio of the real to imaginary parts of the forward amplitude p, and the diffractive slope

parameter B.



For nuclei with mass number A __ 16 we use harmonic oscillator shell model wave functions.

For s-shell nucleons (ref. 14),

(1 i3/4 e_r2/2 a (43)
(I)s (r) = k_a/

and for p-shell nucleons

1 _3/4 e_r2/2 a (44)
(I)p (r) = \_ay X/_ rm

where a is related to the nuclear radius R by a = R 2 and the internal coordinate is expressed in
terms of spherical coordinates as

The s-sheii and p-shell probabilities are given by

4
cs=_

(m = 1 and 2)

(rn = 3)
(45)

(46)

and
A-4

Cp- A

withCs----I andCp=0forA_<4.

The projectile form factors are evaluated from equations (43) and (44) as

(47)

F(q) = / E Cs,P[ges,P (r) 12d3r (48)
8,p

The functions IV1 (eq. (21)) and R1 (eq. (29)) are now found after some effort.

Results and Discussion

Experiments with 800-MeV protons (ref. 15) were performed with several targets to study
the quasi-elastic peak and extend to regions of energy loss corresponding to pion production.
Herein we consider only the quasi-elastic and dip regions of the data. In figures 1 to 6 we show

comparisons of calculations with experimental data for 7Li and 12C at several scattering angles.

The dotted line is for the single-knockout term, the dashed line is for the single- and double-
knockout terms, and the solid line includes all contributions up to m = 4. The fourth-order term

makes only a small contribution for both targets. Because of our neglect of target recoil and any

target excitation energy, tile position of the peak of the calculated values is shifted to slightly
lower energies than those of the experimental values. Following reference 4 we corrected this

shortcoming by performing calculations at w _ w - eB1. The position of the quasi-elastic peak
is then well reproduced by the calculations. Ill the dip region, pion production channels prevent
a direct comparison with the data at this energy. The spin dependence of the nucleon-nucleon

amplitudes also affects the results in this region.

In figures 7 to 10 we show comparisons of calculations at various angles for 4He-4He scattering
at 1.05 GeV/amu with data from reference 16. The solid line shows the m = 1 to 4 terms with the

m = 2 term correction for incoherent projectile motion of equation (41) included. The dashed

line neglects this correction, the dash-dot line is for the rn = 1 and 2 terms, and the dotted line
is for just the m = 1 term. The coherent projectile assumption decreases the contribution from

8



the secondcollisionterm. Thecomparisonswith experimentalvaluesin figures9 and 10areat
scatteringanglescorrespondingto momentumtransferswheretheOaussianwavefunctionsused
areknownto haveinsufficientstrength.In figure11weshowthe angle-integratedcrosssection
for a-c_ scattering. The dashed line is the single knockout and the solid line is the complete
series. Multiple nucleon knockout represents a large correction for large energy loss.

In figures 12 and 13 we show inclusive 4He scattering on 160 at 1 CeV/amu for scattering

angles of 1° and 4 °, respectively. The dashed line is for the first inelastic collision term only,

the dash-dot line is for the first and second terms, the dotted line is for the first to third terms,

and the solid line is for the sum of the first to fourth inelastic collisions. The higher order terms

are more important here than they are for the case of proton projectiles. (See figs. 1 to 6.) In
comparing figures 12 and 13 we note that the forward peak in the cross section is an indication

that the projectile is unlikely to receive both a large energy loss and a momentum transfer
without suffering a change in mass. In figures 14 and 15 we show a similar comparison for 160
scattering on 160 at 1 GeV/amu for scattering angles of 0.5 ° and 1.0%

Conclusions

The high-energy optical model is used to describe energy loss spectra of projectile nuclei in
high-energy collisions. An inelastic multiple-scattering series is found for inclusive projectile

scattering that corresponds to the knockout of target particles. Preliminary calculations are

presented for proton, 4He, and 160 projectiles with an approximation to the higher order
(>2) inelastic collision terms. Improvements in the model should be the inclusion of final-

state interactions of knocked-out target nucleons and the addition of pion production into the

calculations of the inelastic spectra. Calculations will also be improved by considering spin-

dependent two-body amplitudes and the use of response functions that treat low-lying collective
behavior of the target.

NASA Langley Research Center

Hampton, VA 23665-5225

April 9, 1992
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Symbols

Ap

AT

b

c

EI
E_

Ek

Ept

F

fNN

G

j

k

k

kNN

To,N

lOp >

lOT >

P

q

R

Rp

RT

r

S

s

x

Y

_ Brn

(7

mass number of projectile nucleus

mass number of target nucleus

impact parameter vector

speed of light

total final energy

total initial energy

energy of outgoing nucleon

energy of projectile in final state

projectile one-particle form factor

nucleon-nucleon scattering amplitude

target transition form factor

target constituent index

projectile-target relative wave number

wave number vector

nucleon-nucleon relative wave number

nucleon ma_ss

projectile initial state vector

target initial state vector

momentum

momentum transfer vector

=b-b t

projectile matter radius

target matter radius

internal nuclear coordinate vector

= ½ (b + b')

projection of internal coordinate onto impact parameter plane

8--$ I

= ½(s + s'/
projectile constituent index

= ½ (q + q')

= q_qt

Dirac delta

binding energy

cross section

11



q_

X

2

_2

single-particle wave function of target ground state

ground-state elastic eikonal phase

ground-state eikonal phase operator

solid angle

Subscripts and superscripts:

IN inclusive

NN nucleon-nucleon

P projectile

T target

Barred quantities represent matrices.

l_
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Figure 9. Inclusive 4He scattering on 4He at 1.05 GeV/amu for scattering angle of 3.630 °.
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Figure 10. Inclusive 4He scattering on 4He at 1.05 GeV/amu for scattering angle of 4.552%
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